The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families
journal contribution
posted on 2024-11-17, 15:15authored byYichen Zhong, Hakimeh Moghaddas Sani, Bishnu P Paudel, Jason KK Low, Ana PG Silva, Stefan Mueller, Chandrika Deshpande, Santosh Panjikar, Xavier J Reid, Max J Bedward, Antoine M van Oijen, Joel P Mackay
CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.
Funding
National Health and Medical Research Council (1126357)