University of Wollongong
Browse

The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics

journal contribution
posted on 2024-11-17, 15:34 authored by Xiaoyi Gao, Zhenxiang Cheng, Zibin Chen, Yao Liu, Xiangyu Meng, Xu Zhang, Jianli Wang, Qinghu Guo, Bei Li, Huajun Sun, Qinfen Gu, Hua Hao, Qiang Shen, Jinsong Wu, Xiaozhou Liao, Simon P Ringer, Hanxing Liu, Lianmeng Zhang, Wen Chen, Fei Li, Shujun Zhang
(K,Na)NbO based ceramics are considered to be one of the most promising lead-free ferroelectrics replacing Pb(Zr,Ti)O . Despite extensive studies over the last two decades, the mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO ceramics has not been fully understood. Here, we combine temperature-dependent synchrotron x-ray diffraction and property measurements, atomic-scale scanning transmission electron microscopy, and first-principle and phase-field calculations to establish the dopant–structure–property relationship for multi-elements doped (K,Na)NbO ceramics. Our results indicate that the dopants induced tetragonal phase and the accompanying high-density nanoscale heterostructures with low-angle polar vectors are responsible for the high dielectric and piezoelectric properties. This work explains the mechanism of the high piezoelectricity recently achieved in (K,Na)NbO ceramics and provides guidance for the design of high-performance ferroelectric ceramics, which is expected to benefit numerous functional materials. 3 3 3 3 3

Funding

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (51521001)

History

Journal title

Nature Communications

Volume

12

Issue

1

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC