University of Wollongong
Browse

The magnetocaloric effect and critical behaviour of the Mn0.94Ti0.06CoGe alloy

Download (315.59 kB)
journal contribution
posted on 2024-11-16, 08:39 authored by P Shamba, Jianli WangJianli Wang, Jyotish Debnath, S J Kennedy, Rong Zeng, M F Md Din, F Hong, Zhenxiang ChengZhenxiang Cheng, A J Studer, Shi DouShi Dou
Structural, magnetic and magnetocaloric properties of the Mn0.94Ti0.06CoGe alloy have been investigated using x-ray diffraction, DC magnetization and neutron diffraction measurements. Two phase transitions have been detected, at T-str = 235 K and T-C = 270 K. A giant magnetocaloric effect has been obtained at around Tstr associated with a structural phase transition from the low temperature orthorhombic TiNiSi-type structure to the high temperature hexagonal Ni2In-type structure, which is confirmed by neutron study. In the vicinity of the structural transition, at T-str, the magnetic entropy change, -Delta S-M reached a maximum value of 14.8 J kg(-1) K-1 under a magnetic field of 5 T, which is much higher than that previously reported for the parent compound MnCoGe. To investigate the nature of the magnetic phase transition around T-C = 270 K from the ferromagnetic to the paramagnetic state, we performed a detailed critical exponent study. The critical components gamma, beta and delta determined using the Kouvel-Fisher method, the modified Arrott plot and the critical isotherm analysis agree well. The values deduced for the critical exponents are close to the theoretical prediction from the mean-field model, indicating that the magnetic interactions are long range. On the basis of these critical exponents, the magnetization, field and temperature data around T-C collapse onto two curves obeying the single scaling equation M(H, epsilon) = epsilon(beta)f +/- (H/epsilon(beta+gamma)).

Funding

Giant Magnetocaloric Materials and Room Temperature Refrigeration

Australian Research Council

Find out more...

History

Citation

Shamba, P., Wang, J. L., Debnath, J. C., Kennedy, S. J., Zeng, R., Din, M. F Md., Hong, F., Cheng, Z. X., Studer, A. J. & Dou, S. X. (2013). The magnetocaloric effect and critical behaviour of the Mn0.94Ti0.06CoGe alloy. Journal Of Physics-Condensed Matter, 25 (5), 1-7.

Journal title

Journal of Physics Condensed Matter

Volume

25

Issue

5

Language

English

RIS ID

75331

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC