posted on 2024-11-14, 16:00authored byDavid Harman, Aravind Ramachandran, Michelle Gracanin, Stephen Blanksby
The unimolecular reactivities of a range of perbenzoate anions (X−C6H5CO3-), including the perbenzoate anion itself (X = H), nitroperbenzoates (X = para-, meta-, ortho-NO2), and methoxyperbenzoates (X = para-, meta-OCH3) were investigated in the gas phase by electrospray ionization tandem mass spectrometry. The collision-induced dissociation mass spectra of these compounds reveal product ions consistent with a major loss of carbon dioxide requiring unimolecular rearrangement of the perbenzoate anion prior to fragmentation. Isotopic labeling of the perbenzoate anion supports rearrangement via an initial nucleophilic aromatic substitution at the ortho carbon of the benzene ring, while data from substituted perbenzoates indicate that nucleophilic attack at the ipso carbon can be induced in the presence of electron-withdrawing moieties at the ortho and para positions. Electronic structure calculations carried out at the B3LYP/6-311++G(d,p) level of theory reveal two competing reaction pathways for decarboxylation of perbenzoate anions via initial nucleophilic substitution at the ortho and ipso positions, respectively. Somewhat surprisingly, however, the computational data indicate that the reaction proceeds in both instances via epoxidation of the benzene ring with decarboxylation resultingat least initiallyin the formation of oxepin or benzene oxide anions rather than the energetically favored phenoxide anion. As such, this novel rearrangement of perbenzoate anions provides an intriguing new pathway for epoxidation of the usually inert benzene ring.
History
Citation
Harman, D. G., Ramachandran, A., Gracanin, M. and Blanksby, S. J. (2006). The loss of carbon dioxide from activated perbenzoate anions in the gas phase: unimolecular rearrangement via epoxidation of the benzene ring. The Journal of Organic Chemistry, 71 (21), 7996-8005.