University of Wollongong
Browse

The Power of Selecting Key Blocks with Local Pre-ranking for Long Document Information Retrieval

journal contribution
posted on 2024-11-17, 15:42 authored by Minghan Li, Diana Nicoleta Popa, Johan Chagnon, Yagmur Gizem Cinar, Eric Gaussier
On a wide range of natural language processing and information retrieval tasks, transformer-based models, particularly pre-trained language models like BERT, have demonstrated tremendous effectiveness. Due to the quadratic complexity of the self-attention mechanism, however, such models have difficulties processing long documents. Recent works dealing with this issue include truncating long documents, in which case one loses potential relevant information, segmenting them into several passages, which may lead to miss some information and high computational complexity when the number of passages is large, or modifying the self-attention mechanism to make it sparser as in sparse-attention models, at the risk again of missing some information. We follow here a slightly different approach in which one first selects key blocks of a long document by local query-block pre-ranking, and then few blocks are aggregated to form a short document that can be processed by a model such as BERT. Experiments conducted on standard Information Retrieval datasets demonstrate the effectiveness of the proposed approach.

Funding

China Scholarship Council (ANR-19-P3IA-0003)

History

Journal title

ACM Transactions on Information Systems

Volume

41

Issue

3

Publisher website/DOI

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC