University of Wollongong
Browse

The Influence of Poly(2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of highly luminescent ruthnium complex

journal contribution
posted on 2024-11-16, 06:20 authored by Peter InnisPeter Innis, Gordon WallaceGordon Wallace, Lynn Dennany, R J Forster, Emmet J O'Reilly
Immobilisation of a luminescent material on an electrode surface is well known to substantially modulate its photophysical and electrochemical properties. Here a positively charged ruthenium metal complex ([Ru(bpy)3]2+) is immobilised on all electrode surface by ion paring with a sulfonated conducting polymer poly(2-methoxyaniline-5-sulfonic acid), (PMAS). Significantly, our study reveals that the electron transport between the ruthenium metal centres can be greatly enhanced due to the interaction with the conducting polymer when both are surface confined. Charge transfer diffusion rates in the present system are an order of magnitude faster than those found where the metal centre is immobilised within a non-conducting polymeric matrix. Electron transport appears to be mediated through the PMAS conjugated structure, contrasting with the electron hopping process typically observed in non-conducting metallopolymers. This increased regeneration rate causes the ruthenium-based electrochemiluminescence (ECL) efficiency to be increased. The impact of these observations on the ECL detection of low concentrations of disease biomarkers is discussed.

Funding

Nanobionics

Australian Research Council

Find out more...

History

Citation

Dennany, L., O''Reilly, E. J., Innis, P. C., Wallace, G. G. & Forster, R. J. (2008). The Influence of Poly(2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of highly luminescent ruthnium complex. Electrochimica Acta, 53 4599-4605.

Journal title

Electrochimica Acta

Volume

53

Issue

13

Pagination

4599-4605

Language

English

RIS ID

27111

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC