posted on 2024-11-15, 19:02authored byAaron L Moye, Karina C Porter, Scott Cohen, Tram Phan, Katherine G Zyner, Natsuki Sasaki, George Lovrecz, Jennifer BeckJennifer Beck, Tracy Bryan
It has been hypothesized that G-quadruplexes can sequester the 3′ end of the telomere and prevent it from being extended by telomerase. Here we purify and characterize stable, conformationally homogenous human telomeric G-quadruplexes, and demonstrate that human telomerase is able to extend parallel, intermolecular conformations in vitro. These G-quadruplexes align correctly with the RNA template of telomerase, demonstrating that at least partial G-quadruplex resolution is required. A highly purified preparation of human telomerase retains this extension ability, establishing that the core telomerase enzyme complex is sufficient for partial G-quadruplex resolution and extension. The parallel-specific G-quadruplex ligand N-methyl mesoporphyrin IX (NMM) causes an increase in telomeric G-quadruplexes, and we show that telomerase colocalizes with a subset of telomeric G-quadruplexes in vivo. The ability of telomerase to partially unwind, extend and localize to these structures implies that parallel telomeric G-quadruplexes may play an important biological role.
History
Citation
Moye, A. L., Porter, K. C., Cohen, S. B., Phan, T., Zyner, K. G., Sasaki, N., Lovrecz, G. O., Beck, J. L. & Bryan, T. M. (2015). Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nature Communications, 6 (July), 7643-1 - 7643-12.