University of Wollongong
Browse

Synthesis and Light-Harvesting Potential of Cyanovinyl β-Substituted Porphyrins and Dyads

Download (1.1 MB)
journal contribution
posted on 2024-11-16, 04:07 authored by Rhys Mitchell, Klaudia WagnerKlaudia Wagner, Jonathan E Barnsley, Holly van der Salm, Keith C Gordon, David OfficerDavid Officer, Pawel WagnerPawel Wagner
Knoevenagel condensation has been utilized as an alternative way to synthesize a series of β-vinyl-substituted porphyrins and porphyrin dyads with good to excellent yields. The condensation of β-formyl porphyrins and phenylacetonitriles allows control of the substitution pattern and metal centres in the porphyrin dyads, allowing the use of metallated synthons. While the optical and electronic properties of the resulting porphyrin dyes are perturbed by the presence of the cyano substituent, this does not significantly affect their use. For example, Raman spectroscopy, in agreement with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, show porphyrin electronic transitions with delocalization of frontier molecular orbital electron density onto the β substituent. A comparison of the photovoltaic performance of a carboxylated cyanostyryl condensation product and the unsubstituted analogue in dye-sensitized solar cells (DSSCs) was made. Although the devices showed similar efficiency, the device containing the cyano-substituted dye showed an extended incident photon-to-current conversion efficiency (IPCE) due to a slight red-shift in absorption and an increase in photovoltage as a result of a longer electron lifetime. This minimal change in light-harvesting performance highlights the potential of this Knoevenagel synthetic methodology for producing light-harvesting porphyrin dyes.

Funding

Artificial photosynthesis: developing a simple, functional light harvesting porphyrin-protein ensemble

Australian Research Council

Find out more...

ARC Centre of Excellence for Electromaterials Science

Australian Research Council

Find out more...

History

Citation

Mitchell, R., Wagner, K., Barnsley, J. E., van der Salm, H., Gordon, K. C., Officer, D. L. & Wagner, P. (2017). Synthesis and Light-Harvesting Potential of Cyanovinyl β-Substituted Porphyrins and Dyads. European Journal of Organic Chemistry, 2017 (38), 5750-5762.

Journal title

European Journal of Organic Chemistry

Volume

2017

Issue

38

Pagination

5750-5762

Language

English

RIS ID

116914

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC