University of Wollongong
Browse

Symmetries and solutions of the non-autonomous von Bertalanffy equation

Download (155.69 kB)
journal contribution
posted on 2024-11-15, 06:47 authored by Maureen EdwardsMaureen Edwards, R Anderssen
For growth in a closed environment, which is indicative of the situation in laboratory experiments, autonomous ODE models do not necessarily capture the dynamics under investigation. The importance and impact of a closed environment arise when the question under examination relates, for example, to the number of the surviving microbes, such as in a study of the spoilage and contamination of food, the gene silencing activity of fungi or the production of a chemical compound by bacteria or fungi. Autonomous ODE models are inappropriate as they assume that only the current size of the population controls the growth-decay dynamics. This is reflected in the fact that, asymptotically, their solutions can only grow or decay monotonically or asymptote. Non-autonomous ODE models are not so constrained. A natural strategy for the choice of non-autonomous ODEs is to take appropriate autonomous ones and change them to be non-autonomous through the introduction of relevant non-autonomous terms. This is the approach in this paper with the focus being the von Bertalanffy equation. Since this equation has independent importance in relation to practical applications in growth modelling, it is natural to explore the deeper relationships between the introduced non-autonomous terms through a symmetry analysis, which is the purpose and goal of the current paper. Infinitesimals are derived which allow particular forms of the non-autonomous von Bertalanffy equation to be transformed into autonomous forms for which some new analytic solutions have been found.

History

Citation

Edwards, M. & Anderssen, R. S. (2015). Symmetries and solutions of the non-autonomous von Bertalanffy equation. Communications in Nonlinear Science and Numerical Simulation, 22 (1-3), 1062-1067.

Journal title

Communications in Nonlinear Science and Numerical Simulation

Volume

22

Issue

1/03/2024

Pagination

1062-1067

Language

English

RIS ID

96058

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC