University of Wollongong
Browse

Support of distribution system using distributed wind and PV systems

Download (959.21 kB)
journal contribution
posted on 2024-11-13, 20:56 authored by Kai Zou, Ashish AgalgaonkarAshish Agalgaonkar, Kashem MuttaqiKashem Muttaqi, Sarath PereraSarath Perera, N Browne
The application of renewable distributed generation (DG) could be considered as an alternative approach for distribution system expansion planning not only to reduce power loss and carbon emission, but also to improve system voltage profile. This paper investigates technical aspects relatedto voltage support and loss reduction in distribution systems with distributed wind and solar generation. The probabilistic wind, solar, and load models have been developed in order to address uncertain nature of wind speed, solar radiation, and load demand. Investigations have been carried out using Monte Carlo based probabilistic load flow analysis to estimate the probability distributions of system state variables such as lowes nodal voltage and overall real power loss. The proposed approach is tested on a remote 11kV radial distribution feeder derived from an Integral Energy Electricity Network in NewSouth Wales, Australia.

History

Citation

K. Zou, A. P. Agalgaonkar, K. Muttaqi, S. Perera & N. Browne, "Support of distribution system using distributed wind and PV systems," in AUPEC¿09: Proceedings of the 19th Australasian Universities Power Engineering Conference, 2009, pp. 1-6.

Journal title

AUPEC'09 - 19th Australasian Universities Power Engineering Conference: Sustainable Energy Technologies and Systems

Pagination

1-6

Language

English

RIS ID

30901

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC