Positive electrode materials remain a limiting factor for the energy density of lithium-ion batteries (LIBs). Improving the structural stability of these materials over a wider potential window presents an opportune path to higher energy density LIBs. Herein, operando neutron diffraction is used to elucidate the relationship between the structural evolution and electrochemical behavior for a series of Li-ion pouch cells containing Li(NixMnyCoz)O2 (x + y + z = 1) electrode chemistries. The structural stability of these electrodes during charge and discharge cycling across a wide potential window is found to be influenced by the ratio of transition-metal atoms in the material. Of the electrodes investigated in this study, the Li(Ni0.4Mn0.4Co0.2)O2 composition exhibits the smallest magnitude of structural expansion and contraction during cycling while also providing favorable structural stability at high voltage. Greater structural change was observed in electrodes with a higher Ni content, while decreasing inversely to the Ni and Co content in the positive electrode. The combination of structural and electrochemical characterization of a wide range of NMC compositions provides useful insight for the design and application of ideal electrode compositions for long-term cycling and structural stability during storage at the charged state.
Funding
High-voltage electrode materials for lithium-ion batteries
Goonetilleke, D., Sharma, N., Pang, W., Peterson, V. K., Petibon, R., Li, J. & Dahn, J. R. (2019). Structural Evolution and High-Voltage Structural Stability of Li(NixMnyCoz)O2 Electrodes. Chemistry of Materials, 31 (2), 376-386.