University of Wollongong
Browse

File(s) not publicly available

Strong terahertz absorption of monolayer graphene embedded into a microcavity

journal contribution
posted on 2024-11-17, 15:08 authored by Xuguang Guo, Lejie Xue, Zhenxing Yang, Mengjian Xu, Yiming Zhu, Dixiang Shao, Zhanglong Fu, Zhiyong Tan, Chang Wang, Juncheng Cao, Chao Zhang
Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry–Pérot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.

Funding

National Natural Science Foundation of China (61722111)

History

Journal title

Nanomaterials

Volume

11

Issue

2

Pagination

1-12

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC