University of Wollongong
Browse

Spin-wave propagation in alpha-Fe2O3 nanorods: the effect of confinement and disorder

journal contribution
posted on 2024-11-16, 05:03 authored by David CortieDavid Cortie, Gilberto Casillas-Garcia, Andrew Squires, Richard A Mole, Xiaolin WangXiaolin Wang, Yun Liu, Yen-Hua Chen, Dehong Yu
Spin-wave excitations in α-Fe2O3 nanorods were directly detected using time-of-flight inelastic neutron spectroscopy. The dispersive magnon features are compared with those in bulk α-Fe2O3 particles at various temperatures to highlight differences in mode intensity and width. The interchanged spectral intensities in the nanorod are a consequence of a suppressed spin orientation, and this is also evident in the neutron diffraction which demonstates that the weak ferromagnetic phase survives to 1.5 K. Transmission electron microscopy shows that the ellipsoidal particles are single-crystalline with a typical length of 300  ±  100 nm and diameter of 60  ±  10 nm. The main magnon features are similar in bulk and nanoforms and can be explained using a model Hamiltonian based on Samuelson and Shirane's classical theory with exchange constants of J 1  =  −1.03 meV, J 2  =  −0.28 meV, J 3  =  5.12 meV and J 4  =  4.00 meV. Numerical simulations show that two distinct mechanisms may contribute to the magnon line broadening in the nanorods: a distribution of exchange interactions caused by disorder, and a shortened quasiparticle lifetime caused by the scattering of spin waves at surfaces.

Funding

ARC Centre of Excellence in Future Low Energy Electronics Technologies

Australian Research Council

Find out more...

History

Citation

Cortie, D., Casillas-Garcia, G., Squires, A., Mole, R., Wang, X., Liu, Y., Chen, Y. & Yu, D. (2019). Spin-wave propagation in alpha-Fe2O3 nanorods: the effect of confinement and disorder. Journal Of Physics-condensed Matter, 31 (18), 184003-1-184003-13.

Journal title

Journal of Physics Condensed Matter

Volume

31

Issue

18

Language

English

RIS ID

134179

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC