University of Wollongong
Browse

Spatial Bayesian neural networks

journal contribution
posted on 2024-11-17, 16:10 authored by Andrew Zammit-Mangion, Michael D Kaminski, Ba-Hien Tran, Maurizio Filippone, Noel CressieNoel Cressie
Statistical models for spatial processes play a central role in analyses of spatial data. Yet, it is the simple, interpretable, and well understood models that are routinely employed even though, as is revealed through prior and posterior predictive checks, these can poorly characterise the spatial heterogeneity in the underlying process of interest. Here, we propose a new, flexible class of spatial-process models, which we refer to as spatial Bayesian neural networks (SBNNs). An SBNN leverages the representational capacity of a Bayesian neural network; it is tailored to a spatial setting by incorporating a spatial “embedding layer” into the network and, possibly, spatially-varying network parameters. An SBNN is calibrated by matching its finite-dimensional distribution at locations on a fine gridding of space to that of a target process of interest. That process could be easy to simulate from or we may have many realisations from it. We propose several variants of SBNNs, most of which are able to match the finite-dimensional distribution of the target process at the selected grid better than conventional BNNs of similar complexity. We also show that an SBNN can be used to represent a variety of spatial processes often used in practice, such as Gaussian processes, lognormal processes, and max-stable processes. We briefly discuss the tools that could be used to make inference with SBNNs, and we conclude with a discussion of their advantages and limitations.

Funding

Australian Research Council (DE180100203)

History

Journal title

Spatial Statistics

Volume

60

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC