In this paper we construct OD(4pqr(q+1); pqr, pqr, pqr, pqr, pqr+1, pqr+1, pqr+1, pqr+1) for each core order q ≡ 3(mod 4), r ≥ 0 or q = 1, p odd, p ≤ 21 and p ∈ {25, 49}, and COD(2qr(q + 1); qr, qr, qr+1, qr+1) for any prime power q ≡ 1 (mod 4) (including q = 1), r ≥ 0.
History
Citation
Xia, T., Seberry, J., Xia, M. & Zhang, S. (2013). Some new constructions of orthogonal designs. Australasian Journal of Combinatorics, 55 121-130.