University of Wollongong
Browse

Soft, flexible freestanding neural stimulation and recording electrodes fabricated from reduced graphene oxide

Download (1020.97 kB)
journal contribution
posted on 2024-11-16, 10:08 authored by Nicholas V Apollo, Matias I Maturana, Wei Tong, David A X Nayagam, Mohit N Shivdasani, Javad ForoughiJavad Foroughi, Gordon WallaceGordon Wallace, Steven Prawer, Michael R Ibbotson, David J Garrett
There is an urgent need for conductive neural interfacing materials that exhibit mechanically compliant properties, while also retaining high strength and durability under physiological conditions. Currently, implantable electrode systems designed to stimulate and record neural activity are composed of rigid materials such as crystalline silicon and noble metals. While these materials are strong and chemically stable, their intrinsic stiffness and density induce glial scarring and eventual loss of electrode function in vivo. Conductive composites, such as polymers and hydrogels, have excellent electrochemical and mechanical properties, but are electrodeposited onto rigid and dense metallic substrates. In the work described here, strong and conductive microfibers (40-50 μm diameter) wet-spun from liquid crystalline dispersions of graphene oxide are fabricated into freestanding neural stimulation electrodes. The fibers are insulated with parylene-C and laser-treated, forming "brush" electrodes with diameters over 3.5 times that of the fiber shank. The fabrication method is fast, repeatable, and scalable for high-density 3D array structures and does not require additional welding or attachment of larger electrodes to wires. The electrodes are characterized electrochemically and used to stimulate live retina in vitro. Additionally, the electrodes are coated in a water-soluble sugar microneedle for implantation into, and subsequent recording from, visual cortex.

Funding

ARC Centre of Excellence - Australian Centre for Electromaterials Science

Australian Research Council

Find out more...

Development of hybrid carbon nanotube yarn and processing methods to create 3D smart materials and devices

Australian Research Council

Find out more...

History

Citation

Apollo, N. V., Maturana, M. I., Tong, W., Nayagam, D. A. X., Shivdasani, M. N., Foroughi, J., Wallace, G. G., Prawer, S., Ibbotson, M. R. & Garrett, D. J. (2015). Soft, flexible freestanding neural stimulation and recording electrodes fabricated from reduced graphene oxide. Advanced Functional Materials, 25 (23), 3551-3559.

Journal title

Advanced Functional Materials

Volume

25

Issue

23

Pagination

3551-3559

Language

English

RIS ID

100811

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC