University of Wollongong
Browse

Small area estimation with linked data

journal contribution
posted on 2024-11-17, 13:03 authored by N Salvati, E Fabrizi, M G Ranalli, R L Chambers
Data linkage can be used to combine values of the variable of interest from a national survey with values of auxiliary variables obtained from another source, such as a population register, for use in small area estimation. However, linkage errors can induce bias when fitting regression models; moreover, they can create non-representative outliers in the linked data in addition to the presence of potential representative outliers. In this paper, we adopt a secondary analyst’s point of view, assuming that limited information is available on the linkage process, and develop small area estimators based on linear mixed models and M-quantile models to accommodate linked data containing a mix of both types of outliers. We illustrate the properties of these small area estimators, as well as estimators of their mean squared error, by means of model-based and design-based simulation experiments. We further illustrate the proposed methodology by applying it to linked data from the European Survey on Income and Living Conditions and the Italian integrated archive of economic and demographic micro data in order to obtain estimates of the average equivalised income for labour market areas in central Italy.

Funding

European Commission (PRA2018-9)

History

Journal title

Journal of the Royal Statistical Society. Series B: Statistical Methodology

Volume

83

Issue

1

Pagination

78-107

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC