University of Wollongong
Browse

Slow avoidance response to contaminated sediments elicits sublethal toxicity to benthic invertebrates

Download (1.43 MB)
journal contribution
posted on 2024-11-14, 22:27 authored by Daniel Ward, Stuart L Simpson, Dianne Jolley
Advanced analytical techniques have identified the heterogeneity of sediments in aquatic environments which may impact the exposure of benthic organisms to contaminants. Acute and chronic toxicity associated with short, intermittent exposure to four field-collected contaminated sediments were assessed for the epi-benthic amphipod Melita plumulosa and the harpacticoid copepod Nitocra spinipes. Increasing the duration of exposure caused a decrease in survival of M. plumulosa and N. spinipes during 10-d bioassays. Increasing the frequency of exposure to a total exposure time >96-h resulted in a significant toxicity to M. plumulosa. Reproduction decreased for both species from exposure to contaminated sediment. For M. plumulosa, reproductive effects occurred for shorter exposures than the time taken to sense and avoid contaminant exposure. Thus, while avoidance behaviors may prevent acute lethality, slow responses may not prevent sublethal effects. Exposure of M. plumulosa to contaminated sediment appeared to cause a physiological change in females which reduced fecundity. This study indicates that sediment toxicity methods which utilize static continuous exposures may overestimate the toxicity that would occur at a field location. However, by preventing organisms from avoiding unfavorable sediments, these methods provide a precautionary assessment of possible effects, which is usually the aim of most assessments frameworks.

History

Citation

Ward, D. J., Simpson, S. L. & Jolley, D. F. (2013). Slow avoidance response to contaminated sediments elicits sublethal toxicity to benthic invertebrates. Environmental Science and Technology (Washington), 47 (11), 5947-5953.

Journal title

Environmental Science and Technology

Volume

47

Issue

11

Pagination

5947-5953

Language

English

RIS ID

79381

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC