University of Wollongong
Browse

Single step fabrication of antimicrobial fibre mats from a bioengineered protein-based polymer

Download (797.44 kB)
journal contribution
posted on 2024-11-15, 16:07 authored by André da Costa, Ana Pereira, A C Gomes, José C Rodríguez-Cabello, Vitor Gomes da Silva SencadasVitor Gomes da Silva Sencadas, Margarida Casal, Raul Machado
Genetically engineered protein polymers functionalized with bioactive domains have potential as multifunctional versatile materials for biomedical use. The present work describes the fabrication and characterisation of antimicrobial fibre mats comprising the antimicrobial elastin-like recombinamer (ELR) CM4-A200. The CM4-A200 protein polymer derives from the genetic fusion of the ABP-CM4 antimicrobial peptide from Bombyx mori with 200 repetitions of the pentamer VPAVG. This is the first report on non-crosslinked fibre mats fabricated with an antimicrobial ELR stable in solution. Thermal gravimetric analysis of CM4-A200 fibre mats shows one single degradation step at temperatures above 300 °C, with fibres displaying a higher thermal degradation activation. The electrospun CM4-A200 fibres display high antimicrobial activity against Gram-positive and Gram-negative bacteria with no detectable cytotoxic effects against normal human skin fibroblasts and keratinocytes, revealing the great potential of these polymers for the fabrication of biomedical materials.

History

Citation

da Costa, A., Pereira, A. M., Gomes, A. C., Rodriguez-Cabello, J. C., Sencadas, V., Casal, M. & Machado, R. (2017). Single step fabrication of antimicrobial fibre mats from a bioengineered protein-based polymer. Biomedical Materials, 12 (4), 045011-1-045011-11.

Journal title

Biomedical Materials (Bristol)

Volume

12

Issue

4

Language

English

RIS ID

116672

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC