University of Wollongong
Browse

File(s) not publicly available

Simple Synthesis of 3D Ground-Moss-Shaped MnO@N-C Composite as Superior Anode Material for Lithium-Ion Batteries

journal contribution
posted on 2024-11-17, 15:23 authored by Yanjun Zhai, Longhui Gai, Yingjian Gao, Ziwei Tong, Wenlin Wang, Huimei Cao, Suyuan Zeng, Konggang Qu, Zhongchao Bai, Gang Tian, Nana Wang
A MnO@N-doped carbon (MnO@N-C) composite, with a three-dimensional (3D) ground-moss-like structure, was synthesized through hydrothermal treatment, polydopamine coating, and calcination, all without the use of surfactants. In lithium-ion batteries, the MnO@N-C sample, when used as an anode, achieved a performance of 563 mAh g−1 at 1.0 A g−1 across 300 cycles and boasted an initial Coulombic efficiency of 73.2%. In contrast, the MnO electrode had a discharge capacity of 258 mAh g−1 and an efficiency of 53.3% under the same conditions. The improved performance stems from the 3D carbon networks hosting MnO. These networks enhance MnO’s electron transfer ability and offer space to offset volume changes during the charge–discharge cycle.

History

Journal title

Crystals

Volume

13

Issue

10

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC