University of Wollongong
Browse

Sequential collision- and ozone-induced dissociation enables assignment of relative acyl chain position in triacylglycerols

Download (782.75 kB)
journal contribution
posted on 2024-11-16, 06:58 authored by David Marshall, Huong Pham, Mahendra Bhujel, Jacqueline SR Chin, Joanne Y Yew, Kenji Mori, Todd MitchellTodd Mitchell, Stephen Blanksby
Unambiguous identification of isomeric lipids by mass spectrometry represents a significant analytical challenge in contemporary lipidomics. Herein, the combination of collision-induced dissociation (CID) with ozone-induced dissociation (OzID) on an ion-trap mass spectrometer is applied to the identification of triacylglycerol (TG) isomers that vary only by the substitution pattern of fatty acyl (FA) chains esterified to the glycerol backbone. Isolated product ions attributed to loss of a single FA arising from CID of [TG + Na]+ ions react rapidly with ozone within the ion trap. The resulting CID/OzID spectra exhibit abundant ions that unequivocally reveal the relative position of FAs along the backbone. Isomeric TGs containing two or three different FA substituents are readily differentiated by diagnostic ions present in their CID/OzID spectra. Compatibility of this method with chromatographic separations enables the characterization of unusual TGs containing multiple short-chain FAs present in Drosophila.

Funding

Developing next generation technologies for unmasking the lipidome

Australian Research Council

Find out more...

Development of ozone-induced dissociation for lipidomics workflows

Australian Research Council

Find out more...

History

Citation

Marshall, D. L., Pham, H. T., Bhujel, M., Chin, J. S. R., Yew, J. Y., Mori, K., Mitchell, T. W. & Blanksby, S. J. (2016). Sequential collision- and ozone-induced dissociation enables assignment of relative acyl chain position in triacylglycerols. Analytical Chemistry, 88 (5), 2685-2692.

Journal title

Analytical Chemistry

Volume

88

Issue

5

Pagination

2685-2692

Language

English

RIS ID

105917

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC