University of Wollongong
Browse

File(s) not publicly available

Segregation of a Phosphorus Rich Phase During Differential Solidification of BOF Slag

journal contribution
posted on 2024-11-17, 14:02 authored by Thi Bang Tuyen Nguyen, Subhasish Mitra, Geoffrey M Evans, Hamid Doostmohammadi, Brian J Monaghan, Paul Zulli, Kyoung oh Jang, Damien O’Dea, Tom Honeyands
This study investigated the segregation behaviour of the phosphorus rich (P-rich) phase from the iron-rich (Fe-rich) phase in steelmaking slag from laboratory to industrial scale using computational fluid dynamics (CFD) in order to propose a suitable separation practice for the P-rich phase. Crucible experiments and corresponding CFD simulations using enthalpy-porosity approach were first performed to verify the concentration difference of phosphorus in the two phases. Both simulation and experimental results showed ~ 17 to 18 pct increase in phosphorus concentration in the top region of the crucible after solidification. The simulations were then scaled up to an industrial slag pot and slag pit. Reasonable agreement was obtained with published results for phosphorus concentration, and the total liquid amount in the 16-tonne slag pot, under practical cooling conditions. Simulations in the 30-tonne slag pit with in-ground insulation showed an increase of ~ 25 pct of the P-rich phase in the top region (while concentrating the Fe-rich phase in the bottom region). Differential concentration of the P-rich phase within the slag (as a result of heat transfer, micro/macro-segregation) suggested that separation of phosphorus in industrial scale slag pot and slag pit—as batch systems—is possible. Suggestions for separation in continuous operation are also discussed.

Funding

Australian Research Council (LP160101711)

History

Journal title

Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC