University of Wollongong
Browse

SPECS: A non-parametric method to identify tissue-specific molecular features for unbalanced sample groups

Download (1.63 MB)
journal contribution
posted on 2024-11-15, 22:40 authored by Celine Everaert, Pieter Volders, Annelien Morlion, Olivier Thas, Pieter Mestdagh
2020 The Author(s). Background: To understand biology and differences among various tissues or cell types, one typically searches for molecular features that display characteristic abundance patterns. Several specificity metrics have been introduced to identify tissue-specific molecular features, but these either require an equal number of replicates per tissue or they can't handle replicates at all. Results: We describe a non-parametric specificity score that is compatible with unequal sample group sizes. To demonstrate its usefulness, the specificity score was calculated on all GTEx samples, detecting known and novel tissue-specific genes. A webtool was developed to browse these results for genes or tissues of interest. An example python implementation of SPECS is available at https://github.com/celineeveraert/SPECS. The precalculated SPECS results on the GTEx data are available through a user-friendly browser at specs.cmgg.be. Conclusions: SPECS is a non-parametric method that identifies known and novel specific-expressed genes. In addition, SPECS could be adopted for other features and applications.

History

Citation

Everaert, C., Volders, P., Morlion, A., Thas, O. & Mestdagh, P. (2020). SPECS: A non-parametric method to identify tissue-specific molecular features for unbalanced sample groups. BMC Bioinformatics, 21 (1),

Language

English

RIS ID

141699

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC