University of Wollongong
Browse

Robust Decentralized Multi-client Functional Encryption: Motivation, Definition, and Inner-Product Constructions

journal contribution
posted on 2024-11-17, 13:35 authored by Yamin Li, Jianghong Wei, Fuchun Guo, Willy Susilo, Xiaofeng Chen
Decentralized Multi-Client Functional Encryption (DMCFE) is a multi-user extension of Functional Encryption (FE) without relying on a trusted third party. However, a fundamental requirement for DMCFE is that the decryptor must collect the partial functional keys and the ciphertexts from all clients. If one client does not generate the partial functional key or the ciphertext, the decryptor cannot obtain any useful information. We found that this strong requirement limits the application of DMCFE in scenarios such as statistical analysis and machine learning. In this paper, we first introduce a new primitive named Robust Decentralized Multi-Client Functional Encryption (RDMCFE), a notion generalized from DMCFE that aims to tolerate the problem of negative clients leading to nothing for the decryptor, where negative clients represent participants that are unable or unwilling to compute the partial functional key or the ciphertext. Conversely, a client is said to be a positive one if it is able and willing to compute both the partial functional key and the ciphertext. In RDMCFE scheme, the positive client set S is known by each positive client such that the generated partial functional keys help to eliminate the influence of negative clients, and the decryptor can learn the function value corresponding to the sensitive data of all positive clients when the cardinality of the set S is not less than a given threshold. We present such constructions for functionalities corresponding to the evaluation of inner products. 1.We provide a basic RDMCFE construction through the technique of double-masking structure, which is inspired by the work of Bonawitz et al. (CCS 2017). The storage and communication overheads of the construction are small and independent of the length of the vector. However, in the basic construction, for the security guarantee, one set of secret keys can be used to generate partial functional keys for only one function.2.We show how to design the enhanced construction so that partial functional keys for different functions can be generated with the same set of secret keys, at the cost of increasing storage and communication overheads. Specifically, in the enhanced RDMCFE construction, we protect the mask through a single-input FE scheme and a threshold secret sharing scheme having the additively homomorphic property.

Funding

Australian Research Council (B16037)

History

Journal title

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Volume

14442 LNCS

Pagination

134-165

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC