University of Wollongong
Browse

Retro reflection of electrons at the interface of bilayer graphene and superconductor

Download (716.92 kB)
journal contribution
posted on 2024-11-16, 08:09 authored by Yee Ang, Zhongshui Ma, Chao ZhangChao Zhang
Electron reflection at an interface is a fundamental quantum transport phenomenon. The most famous electron reflection is the electronRhole Andreev reflection (AR) at a metal/superconductor interface. While AR can be either specular or retro-type, electronRelectron reflection is limited to only the specular type. Here we show that electrons can undergo retro-reflection in bilayer graphene (BLG). The underlying mechanism for this previously unknown process is the anisotropic constant energy band contour of BLG. The electron group velocity is fully reversed upon reflection, causing electrons to be retro-reflected. Utilizing a BLG/superconductor junction (BLG/S) as a model structure, we show that the unique low energy quasiparticle nature of BLG results in two striking features: (1) AR is completely absent, making BLG/S 100% electron reflective; (2) electrons are valley-selectively focused upon retro-reflection. Our results suggest that BLG/S is a valley-selective Veselago electron focusing mirror which can be useful in valleytronic applications.

Funding

Novel graphene nanostructures: modelling, synthesis, fabrication and characterisation

Australian Research Council

Find out more...

History

Citation

Ang, Y. Sin., Ma, Z. & Zhang, C. (2012). Retro reflection of electrons at the interface of bilayer graphene and superconductor. Scientific Reports, 2 1-6.

Journal title

Scientific Reports

Volume

2

Pagination

1-6

Language

English

RIS ID

74127

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC