University of Wollongong
Browse

Resistive Switching Effect of Multiferroic Complex Oxide Solid Solution Thin Films

journal contribution
posted on 2024-11-17, 13:11 authored by Fang Hu, Wenjie Ming, Liu Yang, Can Huang, Hongyang Zhao, Shuhong Xie, Zhenxiang Cheng, Tingting Jia
Resistive switching in multiferroics has attracted increasing attention due to the potential application for next-generation nonvolatile memory and could lead to forms of computing. However, the resistive switching mechanism in solid solution oxides is unclear. In this article, we have successfully fabricated binary 0.72BiTi0.27Fe0.46Mg0.27O3-0.28LaFeO3 (BTFM-LFO) and ternary 0.625BiTi0.27Fe0.46Mg0.27O3-0.25LaFeO3-0.125La2MgTiO6 (BTFM-LFO-LMT) thin films with precise component control by the spin coating method. The solid solution films exhibit obvious ferroelectricity and magnetism at room temperature. Both binary and ternary solid solution films show switchable polarization, weak magnetism, and reversible and repeatable resistive switching effects. Multistage resistive switching behavior was observed. Four resistive switching states were obtained in the binary film; the highest Ion/off is up to 106. The influence of the film composition on the resistive switching effect was discussed. It is considered that the oxide vacancy/valance exchange-induced defects play a dominant role in the resistive switching effect of complex oxide thin films. This work provides an alternative pathway to explore the resistive switching in multiferroic oxides by fabrication of complex solid solution films.

Funding

National Natural Science Foundation of China (2020B1515120019)

History

Journal title

ACS Applied Electronic Materials

Volume

3

Issue

7

Pagination

3278-3286

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC