University of Wollongong
Browse

Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing

Download (376.02 kB)
journal contribution
posted on 2024-11-15, 06:19 authored by Faisal HaiFaisal Hai, Thomas Riley, Samia Shawkat, Saleh Faraj Magram, Kazuo Yamamoto
The continued depletion of fresh drinking water resources throughout the world has increased the need for a variety of water treatment and recycling strategies. Conventional wastewater treatment processes rely on extensive chemical post-disinfection to comply with the stringent microbiological safety for water reuse. When well designed and operated, membrane bioreactors (MBRs) can consistently achieve efficient removals of suspended solids, protozoa and coliform bacteria. Under optimal conditions, MBR systems can also significantly remove various viruses and phages. This paper provides an in-depth overview of the mechanisms and influencing factors of pathogen removal by MBR and highlights practical issues, such as reduced chemical disinfectant dosing requirements and associated economic and environmental benefits. Special attention has been paid to the aspects, such as membrane cleaning, membrane imperfections/breach and microbial regrowth, in the distribution system on the overall pathogen removal performance of MBR.

History

Citation

Hai, F. I.., Riley, T., Shawkat, S., Magram, S. F. & Yamamoto, K. (2014). Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water, 6 (12), 3603-3630.

Journal title

Water (Switzerland)

Volume

6

Issue

12

Pagination

3603-3630

Language

English

RIS ID

96074

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC