University of Wollongong
Browse

Regulating the intrinsic electronic structure of carbon nanofibers with high-spin state Ni for sodium storage with high-power density

journal contribution
posted on 2024-11-17, 13:39 authored by Zhijia Zhang, Gang Xie, Yuefang Chen, Yanhao Wei, Mengmeng Zhang, Shulei Chou, Yunxiao Wang, Yifang Zhang, Yong Jiang
Carbon nanofibers (CNFs) with high specific surface area show great potential for sodium storage as a hard carbon material. Herein, CNFs anchored with Ni nanoparticles (CNFs/Ni) were prepared through chemical vapor deposition and impregnation reduction methods, in situ growing on the three-dimensional porous copper current collector (3DP-Cu). The coupling effect of high-spin state Ni nanoparticles leads to the increase of defect density and the expansion of lattice spacing of CNFs. Meanwhile, the 3DP-Cu ensures a high loading capacity of CNFs and short ion/electron transport channels. As an integral binder-free anode, the 3DP-Cu/CNFs/Ni exhibits excellent electrochemical performance, which demonstrates a high specific capacity with 298.5 mAh g–1 at 1000 mA g–1 after 1500 cycles, and a high power density with 200 mAh g–1 over 1000 cycles at 5000 mA g–1. Density functional theory calculation results show that the high-spin state Ni regulates the electronic structure of CNFs, which significantly reduces the adsorption energy for Na+ (–2.7 Ev) and thus enables high-rate capability. The regulation of the electronic structure of carbon materials by high-spin state metal provides a new strategy for developing high-power carbonaceous anode materials for sodium-ion batteries.

Funding

National Natural Science Foundation of China (52102291)

History

Journal title

Journal of Materials Science and Technology

Volume

171

Pagination

16-23

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC