University of Wollongong
Browse

Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease

journal contribution
posted on 2024-11-16, 05:57 authored by Karen E Murphy, Amanda M Gysbers, Sarah AbbottSarah Abbott, Nahid Tayebi, Woojin S Kim, Ellen Sidransky, Anthony Cooper, Brett Garner, Glenda M Halliday
Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson’s disease. Reduced glucocerebrosidase and α-synuclein accumulation are directly related in cell models of Parkinson’s disease. We investigated relationships between Parkinson’s disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and α-synuclein levels in brain tissue from subjects with sporadic Parkinson’s disease without GBA1 mutations. Brain regions with and without a Parkinson’s disease-related increase in α-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson’s disease (n = 19) and age- and post-mortem delay-matched controls (n = 10). Levels of glucocerebrosidase, α-synuclein and related lysosomal and autophagic proteins were assessed by western blotting. Glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and α-synuclein messenger RNA expression determined by quantitative polymerase chain reaction. Related sphingolipids were analysed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. Glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson’s disease in regions with increased α-synuclein levels although limited inclusion formation, whereas GBA1 messenger RNA expression was non-selectively reduced in Parkinson’s disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased α-synuclein and decreased ceramide. Glucocerebrosidase deficits in sporadic Parkinson’s disease are related to the abnormal accumulation of α-synuclein and are associated with substantial alterations in lysosomal chaperone-mediated autophagy pathways and lipid metabolism. Our data suggest that the early selective Parkinson’s disease changes are likely a result of the redistribution of cellular membrane proteins leading to a chronic reduction in lysosome function in brain regions vulnerable to Parkinson’s disease pathology.

Funding

Targeting brain lipid homeostasis to treat Alzheimer's disease

Australian Research Council

Find out more...

Cellular effects of glucocerebrosidase (GBA) mutations in Lewy body diseases

National Health and Medical Research Council

Find out more...

History

Citation

Murphy, K. E., Gysbers, A. M., Abbott, S. K., Tayebi, N., Kim, W. S., Sidransky, E., Cooper, A., Garner, B. & Halliday, G. M. (2014). Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease. Brain: a journal of neurology, 137 (3), 834-848.

Journal title

Brain

Volume

137

Issue

3

Pagination

834-848

Language

English

RIS ID

88253

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC