Reactive Extrusion Printing of Zeolitic Imidazolate Framework Films
journal contribution
posted on 2024-11-17, 14:44authored byFatimah Al-Ghazzawi, Luke Conte, Michael W Potts, Christopher Richardson, Pawel Wagner
An outstanding challenge for the field of metal-organic frameworks (MOFs) is structuring to form forms with greater useability. Reactive extrusion printing (REP) is a technique for the direct formation of films from their molecular components on-demand and on-location. Here we apply REP for the first time to zeolitic imidazolate frameworks (ZIFs) and study the interplay of solvent and molarity ratio on the phase distribution between ZIF-8 and ZIF-L in reactive printed films. Our results show that REP controllably directs phase formation between ZIF-L and ZIF-8 and that REP also gives control over crystal size and that high-quality ZIF-8 films, in particular, are produced in low-dispersity interconnected nanoparticulate form. Importantly, we show that REP is responsive to established surface-functionalization techniques to control important printing parameters of line width and thickness. This work expands the repertoire of REP to the important class of ZIFs.