University of Wollongong
Browse

File(s) not publicly available

RDA: Reciprocal Distribution Alignment for Robust Semi-supervised Learning

journal contribution
posted on 2024-11-17, 13:42 authored by Yue Duan, Lei Qi, Lei Wang, Luping Zhou, Yinghuan Shi
In this work, we propose Reciprocal Distribution Alignment (RDA) to address semi-supervised learning (SSL), which is a hyperparameter-free framework that is independent of confidence threshold and works with both the matched (conventionally) and the mismatched class distributions. Distribution mismatch is an often overlooked but more general SSL scenario where the labeled and the unlabeled data do not fall into the identical class distribution. This may lead to the model not exploiting the labeled data reliably and drastically degrade the performance of SSL methods, which could not be rescued by the traditional distribution alignment. In RDA, we enforce a reciprocal alignment on the distributions of the predictions from two classifiers predicting pseudo-labels and complementary labels on the unlabeled data. These two distributions, carrying complementary information, could be utilized to regularize each other without any prior of class distribution. Moreover, we theoretically show that RDA maximizes the input-output mutual information. Our approach achieves promising performance in SSL under a variety of scenarios of mismatched distributions, as well as the conventional matched SSL setting. Our code is available at: https://github.com/NJUyued/RDA4RobustSSL.

Funding

National Natural Science Foundation of China (CAAIXSJLJJ-2021-042A)

History

Journal title

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Volume

13690 LNCS

Pagination

533-549

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC