University of Wollongong
Browse

Quantifying the reduction in power variability of co-located offshore wind-wave farms

journal contribution
posted on 2024-11-17, 12:55 authored by Safdar Rasool, Kashem M Muttaqi, Danny Sutanto, Mark Hemer
Offshore wind energy and wave energy are two exploitable sources of renewable energy available in the same marine environment. A co-located energy harvesting system of these two resources has the potential to play a leading role in the recent renewable energy mix mandate. A co-located system of mature offshore wind technology and a nascent wave energy technology can exploit the synergies of the two technologies, including the reduced cost, the easy operation and maintenance, and more importantly the potential of decreased power variability. This paper deals with a multi-site analysis of wind and wave power resources, and the estimation of exploitable energy through different wind turbines and wave energy converters (WECs). Results are presented for NSW Australia, but the devised strategy is generic and can be implemented in any region. Ten WECs, with different operating principles, are used for the estimation of the exploitable wave power, and the best performing converter is considered for the co-located wind-wave farm. A power fluctuation factor is introduced to quantify the reduction in power variability of the co-located wind-wave farm. Different percentage mixes of wind and wave energy are evaluated for the co-located wind-wave farm in the multi-site analysis.

History

Journal title

Renewable Energy

Volume

185

Pagination

1018-1033

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC