posted on 2024-11-15, 18:32authored byArchana Bhaskaracharya, Phuong Dao-Ung, Iman Jalilian Hassan Pour, Mari Spildrejorde, Kristen K Skarratt, Stephen Fuller, Ronald SluyterRonald Sluyter, Leanne Stokes
P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor.
History
Citation
Bhaskaracharya, A., Dao-Ung, P., Jalilian, I., Spildrejorde, M., Skarratt, K. K., Fuller, S. J., Sluyter, R. & Stokes, L. (2014). Probenecid blocks human P2X7 receptor-induced dye uptake via a pannexin-1 independent mechanism. PLoS One, 9 (3), e93058-1-e93058-8.