University of Wollongong
Browse

Printing between the Lines: Intricate Biomaterial Structures Fabricated via Negative Embodied Sacrificial Template 3D (NEST3D) Printing

journal contribution
posted on 2024-11-17, 15:44 authored by Stephanie E Doyle, Serena Duchi, Carmine Onofrillo, Anita Quigley, Claudia Di Bella, Elena Pirogova, Cathal D O'Connell
Extrusion printing techniques are widely used across tissue engineering and related fields for producing 3D structures from biocompatible thermoplastics, however the achievable structural complexity and porosity can be limited by the nozzle-based, layer-by-layer deposition process. Here, how this limitation can be overcome through a new technique termed Negative Embodied Sacrificial Template 3D printing is illustrated. It is demonstrated how the negative pattern within a 3D printed object can easily describe geometries that are extremely challenging to extrusion print directly with biomaterials, and at high resolution. Negative patterns in a water-soluble sacrificial template can be “developed” by casting in a secondary material and dissolving the template, creating exquisitely complex 3D structures including hyper-branched dendritic structures and open lattices with stiffnesses tuneable over 3 orders of magnitude. The technique is amenable to a plethora of materials from biodegradable thermoplastics (such as polycaprolactone) to resins (including acrylic and epoxy), silicones (including the Sylgard 184 polydimethylsiloxane formulation), ceramics (including hydroxyapatite composites), hydrogels (including agarose and gelatin methacryloyl), low-melt temperature metal alloys and others. Using an unmodified, consumer-grade printer, NEST3D printing achieves high resolution, intricate biomaterial structures with potential applications in biomedical implants and tissue engineering scaffolds.

Funding

RMIT University (1193897)

History

Journal title

Advanced Materials Technologies

Volume

6

Issue

7

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC