University of Wollongong
Browse

Principles and experimentations of self-organizing embedded agents allowing learning from demonstration in ambient robotics

Download (544.65 kB)
journal contribution
posted on 2024-11-15, 03:21 authored by Nicolas Verstaevel, Christine Regis, Marie-Pierre Gleizes, Fabrice Robert
Ambient systems are populated by many heterogeneous devices to provide adequate services to their users. The adaptation of an ambient system to the specific needs of its users is a challenging task. Because human-system interaction has to be as natural as possible, we propose an approach based on Learning from Demonstration (LfD). LfD is an interesting approach to generalize what has been observed during the demonstration to similar situations. However, using LfD in ambient systems needs adaptivity of the learning technique. We present ALEX, a multi-agent system able to dynamically learn and reuse contexts from demonstrations performed by a tutor. The results of the experiments performed on both a real and a virtual robot show interesting properties of our technology for ambient applications.

History

Citation

Verstaevel, N., Regis, C., Gleizes, M. & Robert, F. (2016). Principles and experimentations of self-organizing embedded agents allowing learning from demonstration in ambient robotics. Future Generation Computer Systems: the international journal of grid computing: theory, methods and applications, 64 78-87.

Journal title

Future Generation Computer Systems

Volume

64

Pagination

78-87

Language

English

RIS ID

123637

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC