posted on 2024-11-14, 05:56authored byRaed Alzghool, Yan-Xia Lin
This paper considers parameter estimation for state-space models (SSMs). We propose quasi-likelihood (QL) and asymptotic quasilikelihood (AQL) approaches for the estimation of state-space models. The asymptotic quasi-likelihood (AQL) utilises a nonparametric kernel estimator of the conditional variance covariances matrix Σt to replace the true Σt in the standard quasi-likelihood. The kernel estimation avoids the risk of potential miss-specification of Σt and thus make the parameter estimator more robust. This has been further verified by empirical studies carried out in this paper.
History
Citation
Alzghool, R. & Lin, Y. (2008). Parameters estimation for SSMs: QL and AQL approaches. IAENG International Journal of Applied Mathematics, 38 (1), 34-43.
Journal title
IAENG International Journal of Applied Mathematics