University of Wollongong
Browse

Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination

Download (573.12 kB)
journal contribution
posted on 2024-11-15, 09:36 authored by Hung Duong, Paul CooperPaul Cooper, Bart Nelemans, Tzahi Y Cath, Long Nghiem
A technique to optimise thermal efficiency using brine recycling during direct contact membrane distillation (DCMD) of seawater was investigated. By returning the hot brine to the feed tank, the system water recovery could be increased and the sensible heat of the hot brine was recovered to improve thermal efficiency. The results show that in the optimal water recovery range of 20 to 60% facilitated by brine recycling, the specific thermal energy consumption of the process could be reduced by more than half. It is also noteworthy that within this optimal water recovery range, the risk of membrane scaling is negligible - DCMD of seawater at a constant water recovery of 70% was achieved for over 24. h without any scale formation on the membrane surface. In contrast, severe membrane scaling was observed when water recovery reached 80%. In addition to water recovery, other operating conditions such as feed temperature and water circulation rates could influence the process thermal efficiency. Increasing the feed temperature and reducing the circulation flow rates increased thermal efficiency. Increasing the feed temperature could also mitigate the negative effect of elevated feed concentration on the distillate flux, particularly at a high water recovery.

History

Citation

Duong, H. C., Cooper, P., Nelemans, B., Cath, T. Y. & Nghiem, L. D. (2015). Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination, 374 1-9.

Journal title

Desalination

Volume

374

Pagination

1-9

Language

English

RIS ID

102281

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC