University of Wollongong
Browse

File(s) not publicly available

On the effects of recursive convolutional layers in convolutional neural networks

journal contribution
posted on 2024-11-17, 14:51 authored by Johan Chagnon, Markus Hagenbuchner, Ah Chung Tsoi, Franco Scarselli
The Recursive Convolutional Layer (RCL) is a module that wraps a recursive feedback loop around a convolutional layer (CL). The RCL has been proposed to address some of the shortcomings of Convolutional Neural Networks (CNNs), as its unfolding increases the depth of a network without increasing the number of weights. We investigated the “naïve” substitution of CL with RCL on three base models: a 4-CL model, ResNet, DenseNet and their RCL-ized versions: C-FRPN, R-ResNet, and R-DenseNet using five image classification datasets. We find that this one-to-one replacement significantly improves the performances of the 4-CL model, but not those of ResNet or DenseNet. This led us to investigate the implication of the RCL substitution on the 4-CL model which reveals, among a number of properties, that RCLs are particularly efficient in shallow CNNs. We proceeded to re-visit the first set of experiments by gradually transforming the 4-CL model and the C-FRPN into respectively ResNet and R-ResNet, and find that the performance improvement is largely driven by the training regime whereas any depth increase negatively impacts the RCL-ized version. We conclude that the replacement of CLs by RCLs shows great potential in designing high-performance shallow CNNs.

Funding

Università degli Studi di Firenze (DP210102674)

History

Journal title

Neurocomputing

Volume

591

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC