University of Wollongong
Browse

On matrix completion-based channel estimators for massive MIMO systems

Download (3.44 MB)
journal contribution
posted on 2024-11-15, 17:00 authored by Mingjun Ding, Xiaodong Yang, Rui Hu, Zhitao Xiao, Jun TongJun Tong, Jiangtao XiJiangtao Xi
Large-scale symmetric arrays such as uniform linear arrays (ULA) have been widely used in wireless communications for improving spectrum efficiency and reliability. Channel state information (CSI) is critical for optimizing massive multiple-input multiple-output(MIMO)-based wireless communication systems. The acquisition of CSI for massive MIMO faces challenges such as training shortage and high computational complexity. For millimeter wave MIMO systems, the low-rankness of the channel can be utilized to address the challenge of training shortage. In this paper, we compared several channel estimation schemes based on matrix completion (MC) for symmetrical arrays. Performance and computational complexity are discussed and compared. By comparing the performance in different scenarios, we concluded that the generalized conditional gradient with alternating minimization (GCG-Alt) estimator provided a low-cost, robust solution, while the alternating direction method of multipliers (ADMM)-based hybrid methods achieved the best performance when the array response was perfectly known.

History

Citation

M. Ding, X. Yang, R. Hu, Z. Xiao, J. Tong & J. Xi, "On matrix completion-based channel estimators for massive MIMO systems," Symmetry, vol. 11, (11) pp. 1377-1-1377-18, 2019.

Journal title

Symmetry

Volume

11

Issue

11

Language

English

RIS ID

140259

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC