University of Wollongong
Browse

File(s) not publicly available

Novel surface coating strategies for better battery materials

journal contribution
posted on 2024-11-16, 05:21 authored by Lei Wen, Xiaowei Wang, Guoqiang Liu, Hong Luo, Ji Liang, Shi DouShi Dou
With the advancement of electrode materials for lithium-ion batteries (LIBs), it has been recognized that their surface/interface structures are essential to their electrochemical performance. Therefore, the engineering of their surface by various coating technologies is the most straightforward and effective strategy to obtain the desirable battery characteristics. Coating the electrode materials' surface to form a specifically designed structure/composition can effectively improve the stability of the electrode/electrolyte interface, suppress structural transformation, improve the conductivity of the active materials and consequently lead to enhanced cycle stability and rate capability of LIBs. However, due to the restrictions of conventional coating methods, it is still very hard to obtain a conformal and multifunctional coating layer. This paper focuses on recent advances and summarizes the challenges in the development of surface coating technologies for LIBs. Based on these factors, the new concepts of 'ultrathin conformal coating', 'continuous phase coating' and 'multifunctional coating' are proposed and discussed, followed by the authors' rational perspectives on the future development and potential research hot spot in the surface/ interface engineering of LIB materials and systems.

Funding

Carbon-based catalysts for polysulphide redox reactions in lithium-sulfur batteries

Australian Research Council

Find out more...

History

Citation

Wen, L., Wang, X., Liu, G., Luo, H., Liang, J. & Dou, S. (2017). Novel surface coating strategies for better battery materials. Surface Innovations, 6 (1-2), 13-18.

Journal title

Surface Innovations

Volume

6

Issue

1/02/2024

Pagination

13-18

Language

English

RIS ID

118862

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC