We investigate an extension of ideas of Atiyah-Patodi-Singer (APS) to a noncommutative geometry setting framed in terms of Kasparov modules. We use a mapping cone construction to relate odd index pairings to even index pairings with APS boundary conditions in the setting of KK-theory, generalising the commutative theory. We find that Cuntz-Krieger systems provide a natural class of examples for our construction and the index pairings coming from APS boundary conditions yield complete K-theoretic information about certain graph C*-algebras
History
Citation
Carey, A. L., Phillips, J. & Rennie, A. C. (2010). Noncommutative atiyah-patodi-singer boundary conditions and index pairings in KK-theory. Journal fur die Reine und Angewandte Mathematik: Crelle's journal, 2010 (643), 59-109.