University of Wollongong
Browse

Non-smooth feedback control for Belousov-Zhabotinskii reaction-diffusion equations: semi-analytical solutions

Download (785.48 kB)
journal contribution
posted on 2024-11-15, 09:44 authored by Hassan Alfifi, Timothy MarchantTimothy Marchant, Mark Nelson
The Belousov-Zhabotinskii reaction is considered in one and two-dimensional reaction-diffusion cells. Feedback control is examined where the feedback mechanism involves varying the concentrations in the boundary reservoir, in response to the concentrations in the centre of the cell. Semi-analytical solutions are developed, via the Galerkin method, which assumes a spatial structure for the solution, and is used to approximate the governing delay partial differential equations by a system of delay ordinary differential equations. The form of feedback control considered, whilst physically realistic, is non-smooth as it has discontinuous derivatives. A stability analysis of the sets of smooth delay ordinary differential equations, which make up the full non-smooth system, allows a band of Hopf bifurcation parameter space to be obtained. It is found that Hopf bifurcations for the full non-smooth system fall within this band of parameter space. In the case of feedback with no delay a precise semi-analytical estimate for the stability of the full non-smooth system can be obtained, which corresponds well with numerical estimates. Examples of limit cycles and the transient evolution of solutions are also considered in detail.

History

Citation

Alfifi, H. Y., Marchant, T. R. & Nelson, M. I. (2016). Non-smooth feedback control for Belousov-Zhabotinskii reaction-diffusion equations: semi-analytical solutions. Journal of Mathematical Chemistry, 54 (8), 1632-1657.

Journal title

Journal of Mathematical Chemistry

Volume

54

Issue

8

Pagination

1632-1657

Language

English

RIS ID

107350

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC