Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor
journal contribution
posted on 2024-11-16, 09:55authored byEnamul Haque, M Islam, E Pourazadi, Mahbub Hassan, S Faisal, A Roy, Konstantin KonstantinovKonstantin Konstantinov, Andrew T Harris, Andrew Minett, Vincent G Gomes
A novel method for nitrogen doping of graphene via solid-state impregnation was developed using graphene oxide (GO) as the raw substrate and aminoterephthalic acid as the doping agent via a facile thermal treatment at 750 °C. The structure, morphology and chemical composition of the synthesised N-doped graphene were characterised using XRD, SEM, EDS and XPS. The N-graphene product exhibits homogeneous doping with high nitrogen content (approx. 6 at%) in four configurations: pyridinic-N, pyrrolic-N, pyridinic-N-oxide and graphitic-N. The electric double layer capacitor (EDLC) fabricated using an N-doped graphene electrode attained a specific capacitance of 210 F g-1 (at a current density of 1 A g-1), which was greater than the values attained by pristine graphene and a GO electrode by factors of about two and six, respectively. Our synthesised N-graphene shows supercapacitance at a low electrolyte concentration compared to supercapacitors reported in the literature for high electrolyte concentrations with similar electrodes. The EDLC device we constructed based on N-graphene showed excellent charge-discharge stability for tests of up to 5000 cycles with high capacity retention (>90%). A comparison of the electrochemical performance of GO, graphene and N-graphene demonstrated that doping with nitrogen can dramatically enhance capacitance.
Funding
Advanced Nanostructured Ceramic Composites for Ultracapacitors
Haque, E., Islam, M., Pourazadi, E., Hassan, M., Faisal, S. Nayeem., Roy, A. Kumar., Konstantinov, K., Harris, A. T., Minett, A. I. & Gomes, V. G. (2015). Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor. RSC Advances: an international journal to further the chemical sciences, 5 (39), 30679-30686.