University of Wollongong
Browse

NbSe2 Meets C2N: A 2D-2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultra-Long-Life Lithium–Sulfur Batteries

journal contribution
posted on 2024-11-17, 14:22 authored by Dawei Yang, Zhifu Liang, Chaoqi Zhang, Jordi Jacas Biendicho, Marc Botifoll, Maria Chiara Spadaro, Qiulin Chen, Mengyao Li, Alberto Ramon, Ahmad Ostovari Moghaddam, Jordi Llorca, Jiaao Wang, Joan Ramon Morante, Jordi Arbiol, Shu Lei Chou, Andreu Cabot
The shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPS) hamper the practical application of lithium–sulfur batteries (LSBs). Toward overcoming these limitations, herein an in situ grown C2N@NbSe2 heterostructure is presented with remarkable specific surface area, as a Li–S catalyst and LiPS absorber. Density functional theory (DFT) calculations and experimental results comprehensively demonstrate that C2N@NbSe2 is characterized by a suitable electronic structure and charge rearrangement that strongly accelerates the LiPS electrocatalytic conversion. In addition, heterostructured C2N@NbSe2 strongly interacts with LiPS species, confining them at the cathode. As a result, LSBs cathodes based on C2N@NbSe2/S exhibit a high initial capacity of 1545 mAh g−1 at 0.1 C. Even more excitingly, C2N@NbSe2/S cathodes are characterized by impressive cycling stability with only 0.012% capacity decay per cycle after 2000 cycles at 3 C. Even at a sulfur loading of 5.6 mg cm−2, a high areal capacity of 5.65 mAh cm−2 is delivered. These results demonstrate that C2N@NbSe2 heterostructures can act as multifunctional polysulfide mediators to chemically adsorb LiPS, accelerate Li-ion diffusion, chemically catalyze LiPS conversion, and lower the energy barrier for Li2S precipitation/decomposition, realizing the “adsorption-diffusion-conversion” of polysulfides.

Funding

Generalitat de Catalunya (2020 FI 00103)

History

Journal title

Advanced Energy Materials

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC