University of Wollongong
Browse

National CO2 budgets (2015-2020) inferred from atmospheric CO2 observations in support of the global stocktake

journal contribution
posted on 2024-11-17, 13:31 authored by Brendan Byrne, David F Baker, Sourish Basu, Michael Bertolacci, Kevin W Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M Deutscher, Manvendra K Dubey, Sha Feng, Omaira E García, David WT Griffith, Benedikt Herkommer, Lei Hu, Andrew R Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S Johnson, Dylan BA Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu
Accurate accounting of emissions and removals of CO2 is critical for the planning and verification of emission reduction targets in support of the Paris Agreement. Here, we present a pilot dataset of country-specific net carbon exchange (NCE; fossil plus terrestrial ecosystem fluxes) and terrestrial carbon stock changes aimed at informing countries' carbon budgets. These estimates are based on "top-down"NCE outputs from the v10 Orbiting Carbon Observatory (OCO-2) modeling intercomparison project (MIP), wherein an ensemble of inverse modeling groups conducted standardized experiments assimilating OCO-2 column-Averaged dry-Air mole fraction (XCO2) retrievals (ACOS v10), in situ CO2 measurements or combinations of these data. The v10 OCO-2 MIP NCE estimates are combined with "bottom-up"estimates of fossil fuel emissions and lateral carbon fluxes to estimate changes in terrestrial carbon stocks, which are impacted by anthropogenic and natural drivers. These flux and stock change estimates are reported annually (2015-2020) as both a global 1gg×g1g gridded dataset and a country-level dataset and are available for download from the Committee on Earth Observation Satellites' (CEOS) website: 10.48588/npf6-sw92 . Across the v10 OCO-2 MIP experiments, we obtain increases in the ensemble median terrestrial carbon stocks of 3.29-4.58gPgCO2yr-1 (0.90-1.25gPgCyr-1). This is a result of broad increases in terrestrial carbon stocks across the northern extratropics, while the tropics generally have stock losses but with considerable regional variability and differences between v10 OCO-2 MIP experiments. We discuss the state of the science for tracking emissions and removals using top-down methods, including current limitations and future developments towards top-down monitoring and verification systems.

Funding

National Aeronautics and Space Administration (JPMEERF21S20800)

History

Journal title

Earth System Science Data

Volume

15

Issue

2

Pagination

963-1004

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC