University of Wollongong
Browse

NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances

Download (4.11 MB)
journal contribution
posted on 2024-11-15, 01:46 authored by C Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Maziere, Omaira García, Michel Grutter, Cesar Guarin, James W Hannigan, Frank Hase, Nicholas JonesNicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, M V Makarova, J -M Metzger, Jean François Muller, Justus Notholt, Ivan Ortega, Mathias Palm, Helen MurphyHelen Murphy, A M Poberovskii, Markus Rettinger, John Robinson, D Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Te, Geoffrey Toon
Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50% can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12% and 27% and between 1 and 11x1014 moleccm-2, respectively. The median values among all stations are 13% and 2.9x1014 moleccm-2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013moleccm-2) to highly polluted levels (7x1016moleccm-2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions.

History

Citation

Vigouroux, C., Bauer Aquino, C., Bauwens, M., Becker, C., Blumenstock, T., de Maziere, M., Garcia, O., Grutter, M., Guarin, C., Hannigan, J., Hase, F., Jones, N., Kivi, R., Koshelev, D., Langerock, B., Lutsch, E., Makarova, M., Metzger, J., Muller, J., Notholt, J., Ortega, I., Palm, M., Paton-Walsh, C., Poberovskii, A., Rettinger, M., Robinson, J., Smale, D., Stavrakou, T., Stremme, W., Strong, K., Sussmann, R., Te, Y. & Toon, G. (2018). NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques, 11 (9), 5049-5073.

Journal title

Atmospheric Measurement Techniques

Volume

11

Issue

9

Pagination

5049-5073

Language

English

RIS ID

130166

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC