University of Wollongong
Browse

Multifunctional sensors for respiration monitoring and antibacterial activity based on piezoelectric PVDF/BZT-0.5BCT nanoparticle composite nanofibers

journal contribution
posted on 2024-11-17, 15:30 authored by Mingming Li, Xuexue Zou, Yuxing Ding, Weijie Wang, Zhenxiang Cheng, Dong Wang, Zengmei Wang, Yi Shao, Jing Bai
In clinical practice, combining sensitive and efficient sensors that have antibacterial properties with masks is a convenient way to monitor vital signs. Therefore, developing flexible pressure sensors with high sensitivity and antibacterial properties is the key for such smart devices. In our work, poly (vinylidene fluoride) (PVDF) nanofibers (NFs) with a high piezoelectric phase were fabricated by electrospinning with an optimized spinning voltage and collecting roller speed. Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) nanoparticles (NPs) synthesized by the hydrothermal method were introduced into PVDF NFs to improve their piezoelectric response to external strain. With 20 wt% 0.5BZT-BCT NPs, the PVDF/BZT-BCT fiber composite sensor showed an output voltage up to 6.37 V with superior sensitivity (0.24 V Kpa−1), a short response time (∼50 ms), good durability over a wide time range and a low detection limit (2.50 mg). The sensor was built in a mask that demonstrated high sensitivity in monitoring the respiratory rate as well as antimicrobial resistance to Echerichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, this composite fiber sensor can also be applied for the detection of body movement. The multifunctional 0.5BZT-BCT/PVDF fiber composite sensor may find clinical applications.

Funding

National Natural Science Foundation of China (51978153)

History

Journal title

Smart Materials and Structures

Volume

31

Issue

12

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC