University of Wollongong
Browse

Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries

Download (1.76 MB)
journal contribution
posted on 2024-11-16, 05:21 authored by Qiannan Liu, Zhe Hu, Mingzhe Chen, Qinfen Gu, Yuhai Dou, Ziqi Sun, Shulei Chou, Shi DouShi Dou
The tunnel-structured Na0.44MnO2 is considered as a promising cathode material for sodium-ion batteries because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na0.44MnO2 have been first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode materials for Na-ion batteries. The microstructure and composition of prepared Na0.44MnO2 is highly related to the sintering temperature. This structure with suitable size increases the contact area between the material and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific capacity of 72.8 mA h g−1 and capacity retention of 99.6% after 2000 cycles at a high current density of 1000 mA g−1 . The as-designed multiangular Na0.44MnO2 provides new insight into the development of tunnel-type electrode materials and their application in rechargeable sodiumion batteries

Funding

Multifunctional 2D materials for sustainable energy applications

Australian Research Council

Find out more...

History

Citation

Liu, Q., Hu, Z., Chen, M., Gu, Q., Dou, Y., Sun, Z., Chou, S. & Dou, S. Xue. (2017). Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. ACS Applied Materials and Interfaces, 9 (4), 3644-3652.

Journal title

ACS Applied Materials and Interfaces

Volume

9

Issue

4

Pagination

3644-3652

Language

English

RIS ID

112785

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC