Multi-Source DOA Estimation in Reverberant Environments by Jointing Detection and Modeling of Time-Frequency Points
journal contribution
posted on 2024-11-17, 15:11authored byMaoshen Jia, Yuxuan Wu, Changchun Bao, Christian Ritz
In this article, the direction of arrival (DOA) estimation of multiple speech sources in reverberant environments is investigated based on the recording of a soundfield microphone. First, the recordings are analyzed in the time-frequency (T-F) domain to detect both 'points' (single T-F points) and 'regions' (multiple, adjacent T-F points) corresponding to a single source with low reverberation (known as low-reverberant-single-source (LRSS) points). Then, a LRSS point detection algorithm is proposed based on a joint dominance measure and instantaneous single-source point (SSP) identification. Following this, initial DOA estimates obtained for the detected LRSS points are analyzed using a Gaussian Mixture Model (GMM) derived by the Expectation-Maximization (EM) algorithm to cluster components into sources or outliers using a rule-based method. Finally, the DOA of each actual source is obtained from the estimated source components. Experiments on both simulated data and data recorded in an actual acoustic chamber demonstrate that the proposed algorithm exhibits improved performance for the DOA estimation in reverberant environments when compared to several existing approaches.
Funding
National Natural Science Foundation of China (61471014)
History
Journal title
IEEE/ACM Transactions on Audio Speech and Language Processing