University of Wollongong
Browse

Moves on k -graphs preserving Morita equivalence

journal contribution
posted on 2024-11-17, 14:27 authored by Caleb Eckhardt, Kit Fieldhouse, Daniel Gent, Elizabeth Gillaspy, Ian Gonzales, David Pask
We initiate the program of extending to higher-rank graphs (k-graphs) the geometric classification of directed graph -algebras, as completed in Eilers et al. (2016, Preprint). To be precise, we identify four "moves,"or modifications, one can perform on a k-graph, which leave invariant the Morita equivalence class of its -algebra. These moves - in-splitting, delay, sink deletion, and reduction - are inspired by the moves for directed graphs described by Sørensen (Ergodic Th. Dyn. Syst. 33(2013), 1199-1220) and Bates and Pask (Ergodic Th. Dyn. Syst. 24(2004), 367-382). Because of this, our perspective on k-graphs focuses on the underlying directed graph. We consequently include two new results, Theorem 2.3 and Lemma 2.9, about the relationship between a k-graph and its underlying directed graph.

Funding

National Science Foundation (DMS-1800749)

History

Journal title

Canadian Journal of Mathematics

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC